Bang for Buck: Best Practices in Pavement Engineering

John Harvey

Sampat Kedarisetty

University of California Pavement Research Center

City and County Pavement Improvement Center

City and County Pavement Improvement Center

APWA

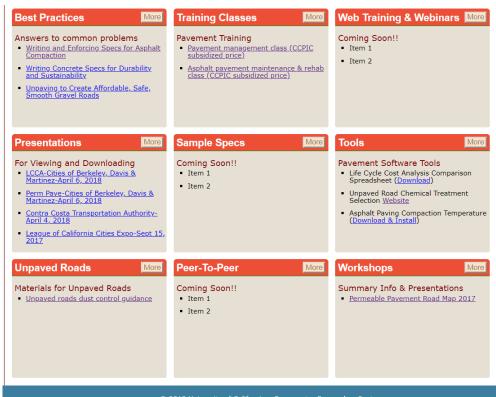
Richmond, CA

6 Nov 2018

City and County Pavement Improvement Center <u>www.ucprc.ucdavis.edu/ccpic</u>

- Sponsored by League of California Cities and California State Association of Counties
- Chartered 28 September 2018

Mission and Vision for CCPIC

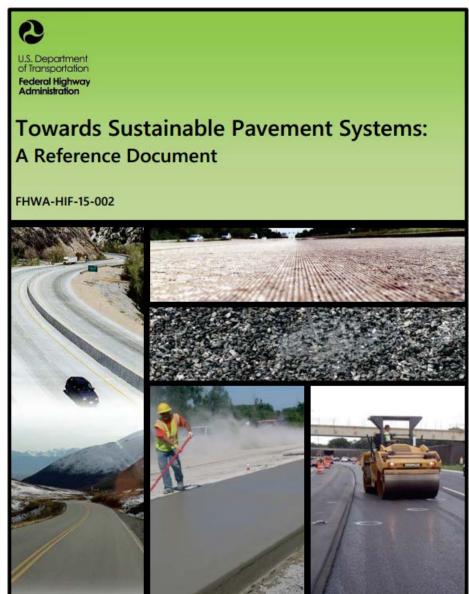

- Mission:
 - CCPIC works with local governments to increase pavement technical capability through timely, relevant, and practical support, training, outreach and research
- Vision:
 - Making Local Government-Managed Pavement Last Longer, Cost Less, and Be More Sustainable

Organization

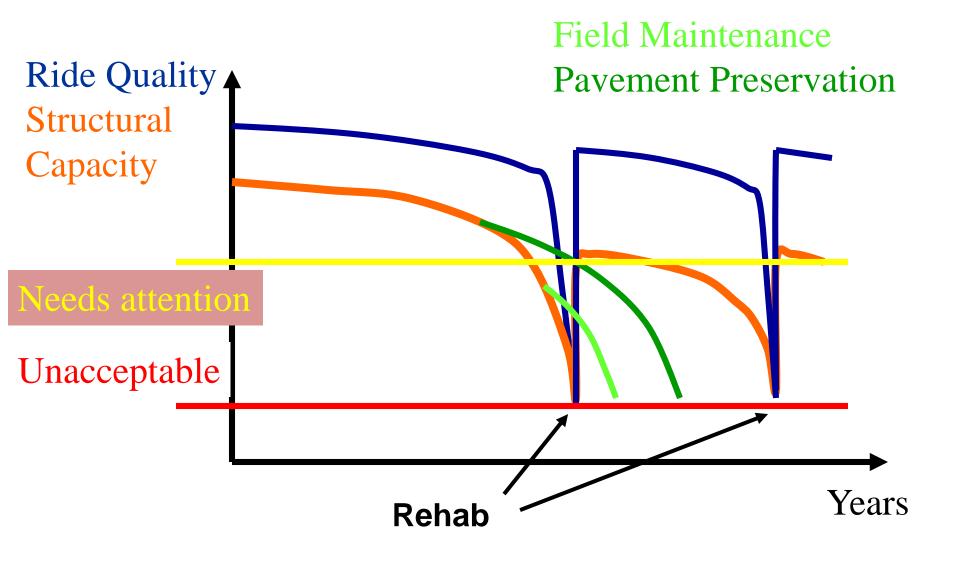
- UC Partners
 - University of California Pavement Research Center (lead), administered by ITS Davis
 - UC Berkeley ITS Tech Transfer, administered by ITS Berkeley
- CSU partners
 - CSU-Chico, CSU-Long Beach, Cal Poly San Luis Obispo
 - Funding partner: Mineta Transportation Institute, San Jose State University
- Governance:
 - Governance Board consisting of 3 city and 3 county transportation professionals
- Funding
 - Funding to set up CCPIC and initial activities from the state legislature, SB1 funding through the ITS at UCD and UCB

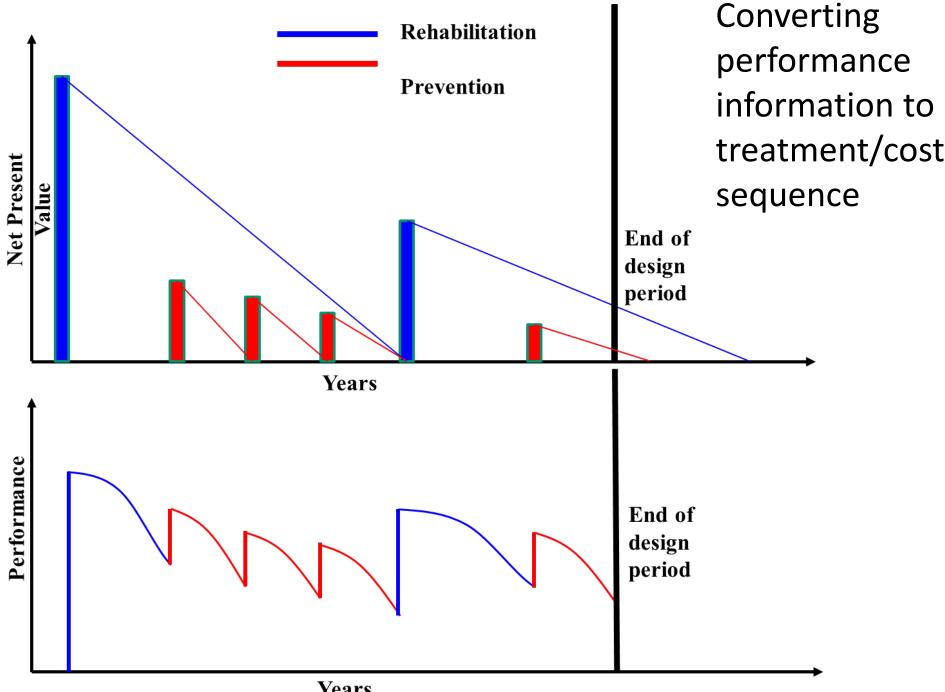
CCPIC Scope of Work

- Deliver training and technology transfer
- Develop guidance, specifications, and tools
- Establish and deliver a pavement engineering and management certificate program



- Create and operate a resource center
- Provide research and development support


So what can be done to make pavements more sustainable?


- FHWA Sustainable Pavements Task Group
 - More sustainable pavement reference document (2015)
 - Covers everything about pavement and sustainability
 - Tech briefs and webinars
- Google "FHWA sustainable pavement"

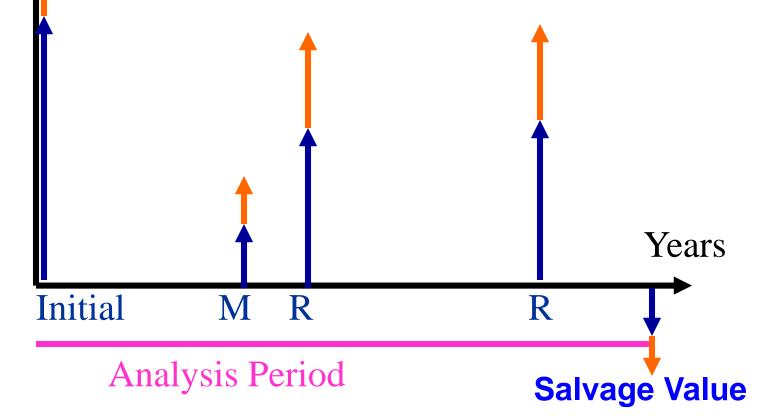
http://www.fhwa.dot.gov/pavement/ sustainability/ref_doc.cfm

Life Cycle Cost Analysis (LCCA) Basics

Years

LCCA calculations

\$ (Agency

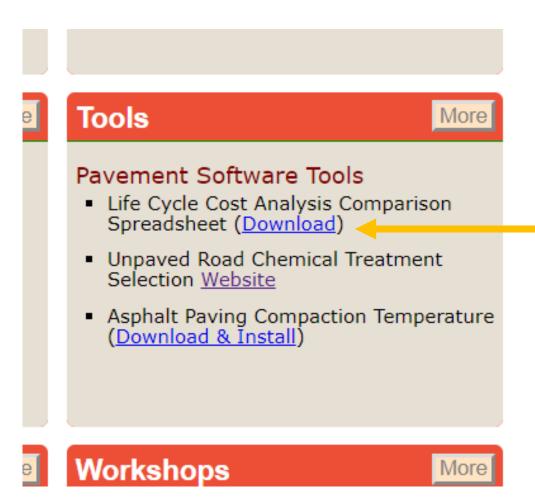

Costs)

\$ (User

Costs)

 Net present value = add up the costs over the analysis period, including discount rate

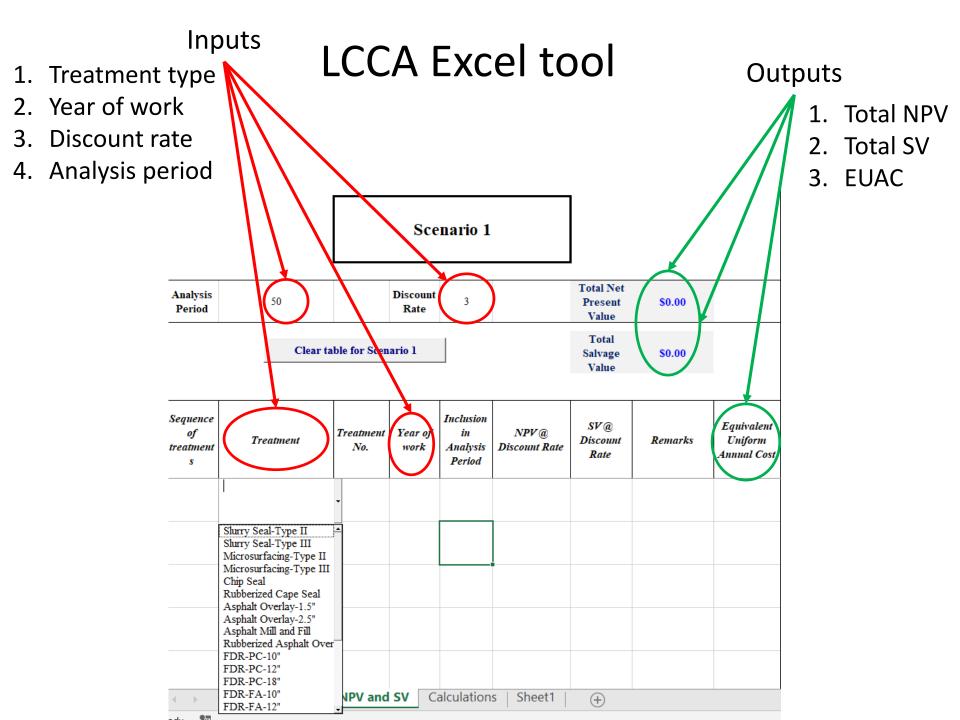
• Equivalent Uniform Annual Cost, spread NPV over time, with discount


Where can LCCA be implemented?

- PMS decision tree optimization
 - Condition trigger levels for treatment (timing)
 - Treatment selection
- Pavement type selection
- Policy evaluation
 - Materials changes
 - Construction quality specifications
 - Design methods

CCPIC LCCA Excel tool

Download at: <u>http://www.ucprc.ucdavis.edu/ccpic/</u> or Google "CCPIC UCPRC"


- Excel tool to calculate Net Present Value, Salvage Value and Equivalent Uniform Annual Cost
- Can compare 3 scenarios side by side
- Can choose and edit the list and sequence of treatments

CCPIC LCCA Excel tool

- Excel tool to calculate Net Present Value, Salvage Value and Equivalent Uniform Annual Cost
- Can compare 3 scenarios side by side
- Can choose and edit the list and sequence of treatments

File			Page	Layout	Form	ulas Da	ta Rev	iew Vie	w Develop	er He	lp 🛛 Tel	ll me what yo	u want to	do												🖒 Share
	X Cut È Copy → ✓ Format Pa		B I <u>U</u>	==	- 🕭	• <u>A</u> •	= =	€ €	∰ Wrap Text	enter 🔹		€.0 .00 (.00 ⇒.0 F	Conditiona ormatting	al Format	as Good		Normal Neutral	B	Bad Calculation	• • • • •	sert Delete	Format	∑ Au ↓ Fill ♦ Cle	toSum • A • Z ear • Filt	T & Find a) & : *
(Clipboard	Ľ,		Font		rş.		Alignme	ent	E,	Numbe	er 🗔				Sty	/les				Cells			Editing		^
K15		: ×	e	f _x	E	F	G	н	4 7 4	J	к	L	м	н	0	P	æ	B	5	T	U	ų	W	8	v	2
		[Scer	nario 1]						Sc	enario 2								Sce	enario 3	3]	
Analys Period	is 20	5	I	Discount Rate	4		Total Net Present Value			Analysis Period	20		Discoun Rate	t 4		Total Net Present Value	\$0.00		Analysis Period	20		Discount Rate	4		Total Net Present Value	\$0.00
	_	Clear tabl	le for Scena	urio 1			Total Salvage Value	\$0.00			Clear	table for Scenari	o 2			Total Salvage Value	<u>\$0.00</u>		0	Clear table	for Scenario 3	3			Total Salvage Value	<u>\$0.00</u>
Sequence of treatmen	Treatma	ent	Treatment No.	Year of work	Inclusion in Analysis Period	NPV@ Discount Rate	SV@ Discount Rate	Remarks	Equivalent Uniform Annual Cost	Sequence of treatments	Treatmen	nt Treatma No.		Inclusion in Analysis Period	NPV @ Discount Rate	SV@ Discount Rate	Remarks	Equivalent Uniform Annual Cost	Sequence of treatments	Treatment	Treatment No.	Year of work	Inclusion in Analysis Period	NPV@ Discount Rate	SV@ Discount Rate	Remark
	Tree	atment	DB	IPV and	d SV	Calculatio	ons Sh	neet1	(+)							: •										•

LCCA Excel tool

Editable:

• Functional Unit

• Treatment List: Cost, Life of Treatment

	SY			
Functional Unit	7040	1 ln mi		
Treatment Name	Treatment No.	Cost/SY	Total Cost	Life of Investment
Slurry Seal-Type II	1	7	49280	
Shurry Seal-Type III	2	7	49280	
Microsurfacing-Type II	3	7	49280	
Microsurfacing-Type III	4	7	49280	
Chip Seal	5	10	70400	
Rubberized Cape Seal	6	6	42240	
Asphalt Overlay-1.5"	7	10	70400	1
Asphalt Overlay-2.5"	8	20	140800	1
Asphalt Mill and Fill	9	38	267520	2
Rubberized Asphalt Overlay	10	30	211200	2
FDR-PC-10"	11	40	281600	1
FDR-PC-12"	12	45	316800	1
FDR-PC-18"	13	50	352000	2
FDR-FA-10"	14	35	246400	
FDR-FA-12"	15	40	281600	1
CIR-4"	16	25	176000	
CIR-5"	17	27	190080	
CIR-6"	18	30	211200	1
BCOA-4"	19	35	246400	8
BCOA-5"	20	37	260480	1
BCOA-6"	21	40	281600	1
Cape seal-2.5"	22	10	70400	
Remove/replace	23	52	366080	2
Pulv HMA/compact	24	26	183040	2
Treatment DB	NPV and SV Calculations	Sheet1 (+		

Performance prediction is key to good pavement management and LCCA

- Pavement
 Management
 Systems
 - Performance
 estimates
 are typically
 in terms of
 pavement
 condition
 index (PCI)

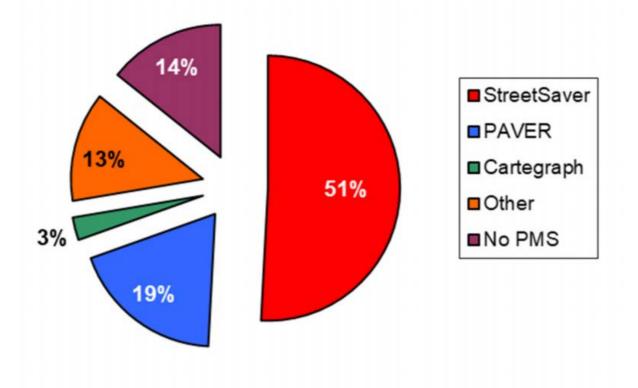


Figure B.4 PMS Software Used By Cities And Counties

Local Streets and Roads 2018

Some changes that can be considered to improve life cycle cost

- Pavement management and preservation
 - Treatment timing
 - Treatment selection
 - Treatment sequence
- Asphalt compaction

Life cycle cost analysis results for alternative scenarios for asphalt pavement

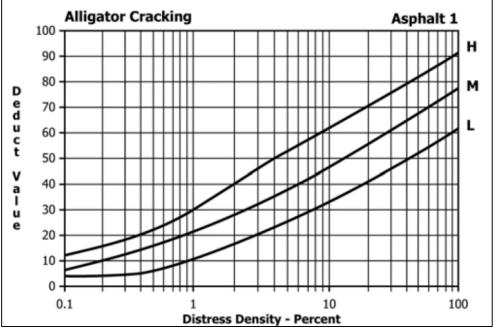
Asphalt Mill and Fill - \$38/SY Microsurfacing - \$14/SY

Schedule A

Treatment	Year
Asphalt Mill and Fill	0
Microsurfacing	12
Microsurfacing	20
Microsurfacing	28
Asphalt Mill and Fill	33
Microsurfacing	45

Schedule BScheduleTreatmentYearTreatmentAsphalt Mill
and Fill0Asp
andMicrosurfacing13MicrosurfacingMicrosurfacing23Asp
andAsphalt Mill
and Fill29Asp
andMicrosurfacing42

Schedule C


•	Treatment	Year
	Asphalt Mill and Fill	0
	Microsurfacing	15
	Asphalt Mill and Fill	26
	Microsurfacing	41

Life cycle cost analysis results Results will vary depending on relative costs, discount rate, performance estimates

	1 In mile, total costs, 50 years analysis period, 4% discount						
\$700,000							
\$650,000	Schedule A	Schedule B	Schedule C				
\$600,000		Schedule D	Schedule e				
\$550,000	¢507.056						
\$500,000	\$507,956	\$481,464					
\$450,000			\$441,155				
\$400,000							
\$350,000							
\$300,000							

Pavement management: Use of PCI vs measured cracking

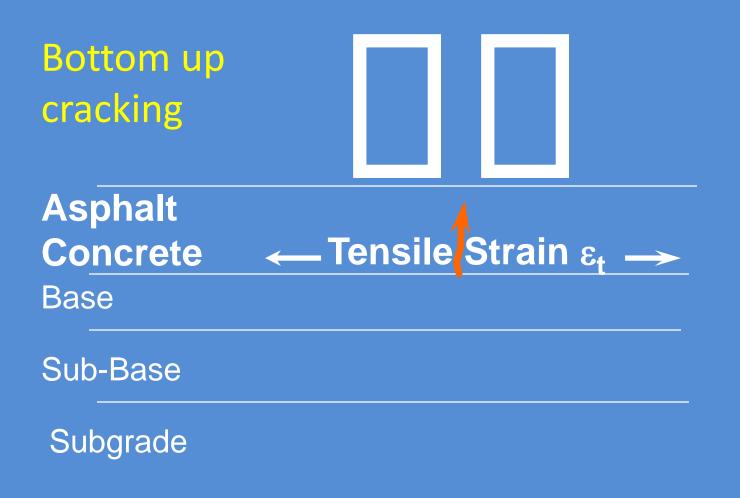
- PCI is amalgamation of different distresses
- Can have same PCI for very different conditions
- Engineering meaning in the condition survey is lost
- Recommend

- Use PCI as communication tool for management/public
- Manage asphalt pavement considering:
 - Cracking: age and traffic caused
 - Other distresses (rutting, raveling)

Same PCI, different pavement condition

CASE 1: TRAFFIC LOADING RELATED, PCI = 34						
DISTRESS	SEVERITY	QUANTITY	DV			
Alligator Cracks	High	1x6	18			
Alligator Cracks	Medium	1x4 1x5 1x7	17			
Potholes	Medium	3	48			
Potholes	Low	3	30			
Rutting	Low	2x5 2x8	10			
CASE 2: AGE, CONSTRUCTION, UTILITIES, OTHER FACTORS, PCI = 32						
Long/Trans Crack	High	15 20 8 6 12 18 6x7	43			
Long/Trans Crack	Medium	25x2 18 13 9 10	20			
Patching/Utility	High	25x4 25x2	40			
Patching/Utility	Medium	12x6 4x7	20			
Block Cracks	High	4x6 6x5	13			

Variables in the PCI for asphalt pavement


- Fatigue cracking and potholes caused by <u>heavy loads</u>:
 - Alligator cracking
 - Potholes
- Cracking caused by aging:
 - Block cracking
 - Joint reflections
 - Longitudinal and transverse cracking

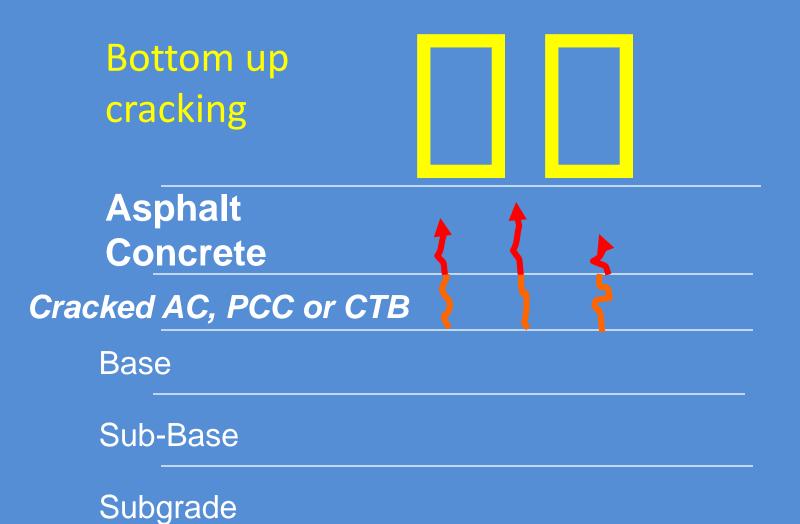
- Other distresses
 - Low ride quality
 - Bleeding
 - Bumps and sags
 - Corrugations
 - Depressions
 - Edge cracking
 - Lane/shoulder drop-off
 - Patching and utility cut patching
 - Polished aggregate
 - Rutting
 - Shoving
 - Slippage cracking
 - Swelling
 - Weathering and raveling

Bottom Up Fatigue Cracking

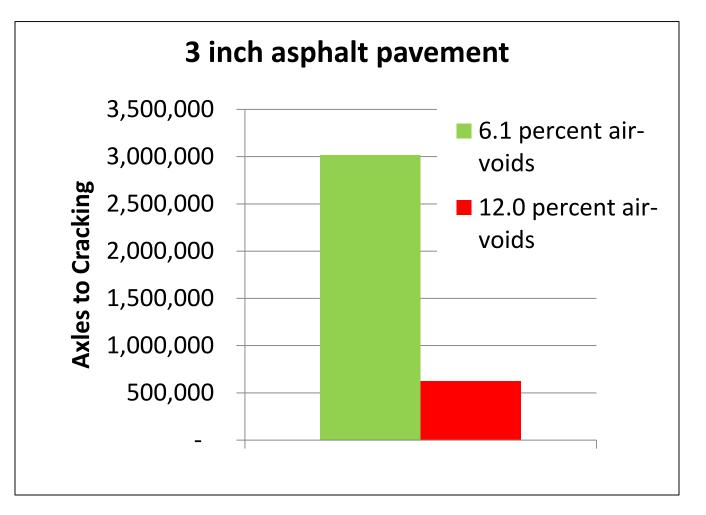
- Interaction of asphalt concrete layer, support of underlying structure, materials selection, construction compaction
- Traffic loading
 - Only the truck loads count, cars are too light
 - slower speeds = longer durations = bigger strains
- Environment
 - temperature
 - water sensitivity
 - aging

Fatigue Cracking

Initial Wheelpath Cracking (transverse or longitudinal)


Cracks connect: Alligator Cracking (Caltrans calls "Type B")

Fatigue Cracking in Wheelpaths


Reflective Cracking

Reflection Crack over PCC Joint

Effect of asphalt construction compaction on axle loads to cracking

General rule: 1% increase in constructed air-voids = 10% reduction in fatigue life

Simulation based on FHWA Westrack project field results

Treatment for load related fatigue cracking

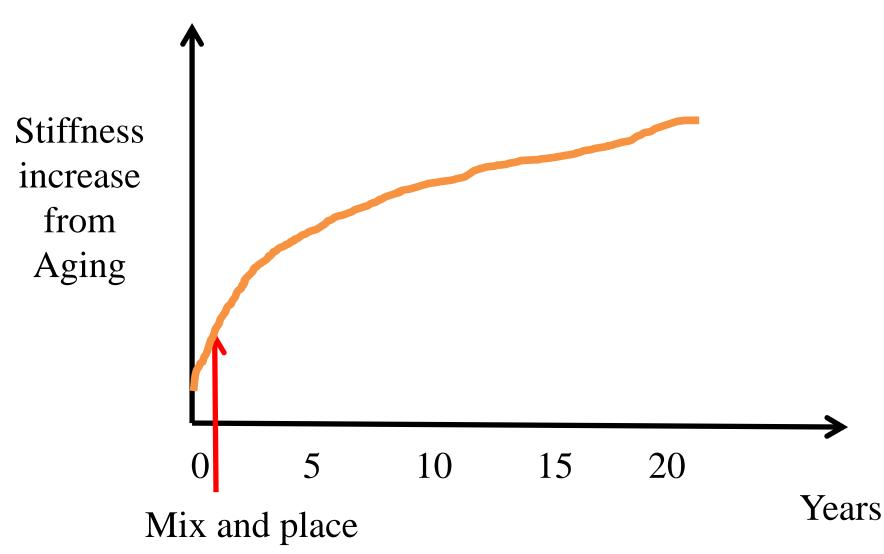
- Asphalt will fatigue
- Surface treatments will slow some
- Will need to do periodic mill and fill
- Do not let wheelpath cracking become extensive or must reconstruct

Aging of the Asphalt

- Aging of the asphalt
 - Caused by oxidation, volatilization
 - Faster if high permeability and temperature
 - Permeability greatly reduced with better asphalt compaction
- Effects
 - Stiffening of mix with time
 - Won't relax stresses from thermal contraction as well

Block Cracking

- Typically caused by long-term aging of asphalt concrete and daily temperature cycling (expansion/contraction)
- May also be reflection cracking from shrinkage cracks in cement treated base
- Poor asphalt construction compaction allows air to enter and age the asphalt faster, accelerates aging



Block Cracking


Aging

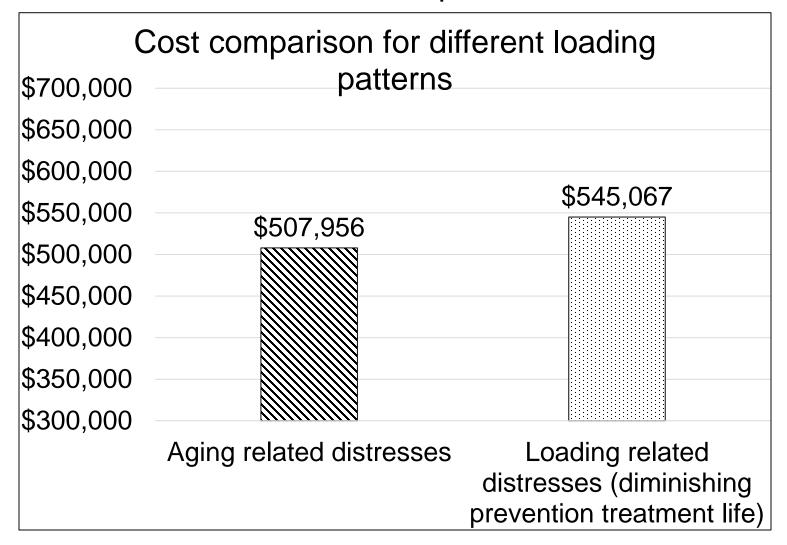
mostly done by 5 years after placement

Treatment for age-related cracking

- Keep the surface protected from aging
- Can potentially due perpetual slurries or microsurfacings
- What frequency?
 - Do not let cracking get extensive
 - But doing more frequently than needed can be a waste

Example fatigue vs age-related treatment sequences

Aging related distresses (no diminishing prevention treatment lives)


Treatment	Year
Asphalt Mill and Fill	0
Microsurfacing	12
Microsurfacing	20
Microsurfacing	28
Asphalt Mill and Fill	33
Microsurfacing	45

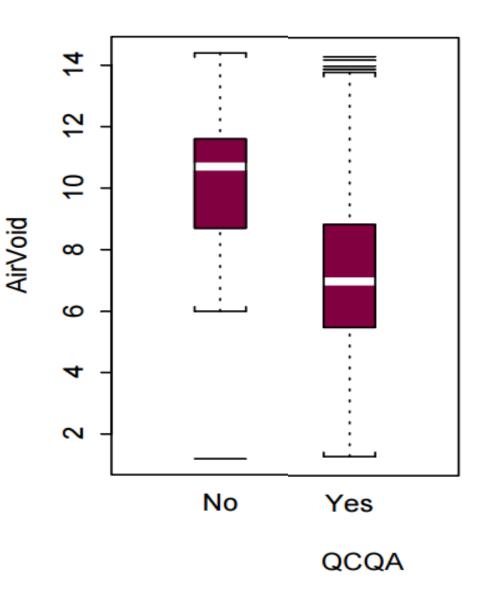
Asphalt Mill and Fill - \$38/SY Microsurfacing - \$14/SY

Load related distresses (diminishing prevention treatment lives)

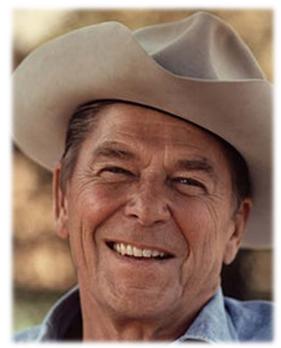
Treatment	Year
Asphalt Mill and Fill	0
Microsurfacing	12
Microsurfacing	19
Microsurfacing	25
Asphalt Mill and Fill	29
Microsurfacing	41
Microsurfacing	48

Life cycle cost analysis results Example fatigue vs age-related treatment sequences

Recommendation for use of LCCA


- Pavement management
 - Use PCI in network-level analysis to set overall budget, measure network condition
 - Do treatment selection engineering work based on truck/bus traffic level, cracking and surface defects data, not PCI
 - Use your costs, cracking predictions and LCCA to develop best sequences of treatments
 - Look at your fatigue and aging-related cracking data
 - Estimate treatment lives
 - Learn to use LCCA to discuss with council/board

Recommendation for how to get good asphalt compaction


- Use a quantitative (QC/QA) specification to measure compaction
- Write spec in terms of *in-place bulk density* and *theoretical maximum density* (TMD) and not *laboratory theoretical maximum density* (LTMD)
- Use cores or nuclear gauges calibrated for the specific mix/project to provide daily feedback to contractor and agency
- Apply payment reductions if they don't meet your specification, <u>and enforce</u> <u>those payment reductions</u>

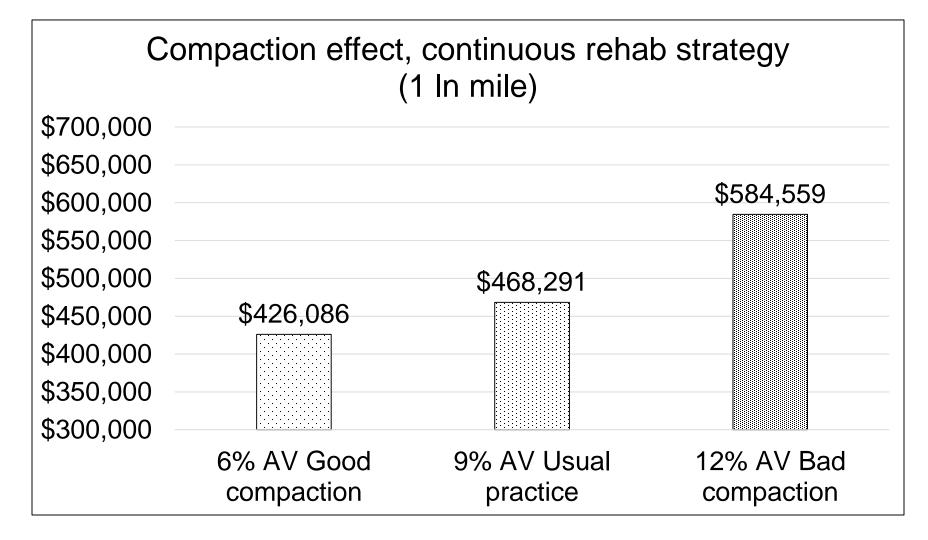
Caltrans experience with method spec vs using in-place measurement and penalties (QC/QA)

- Spec changed in 1996-98
- Very large culture change in Caltrans

"Trust but verify"

But what about?

- Won't this increase the bid cost for my asphalt?
- Isn't the cost of managing this specification high?
- Won't coring damage my new pavement?
- What can I do to help my contractors meet and exceed the specification and further increase the life of my overlays?



Compaction effects repeated mill and fill

3% change in air-voids is about 30% change in cracking life
 Asphalt Mill and Fill - \$38/SY

9% AV – Usual practice		12% AV – Poor compaction		6% AV – Better compaction	
Treatment	Year	Treatment	Year	Treatment	Year
Asphalt Mill and Fill	0	Asphalt Mill and Fill	0	Asphalt Mill and Fill	0
Asphalt Mill and Fill	18	Asphalt Mill and Fill	13	Asphalt Mill and Fill	23
Asphalt Mill and Fill	36	Asphalt Mill and Fill	26	Asphalt Mill and Fill	46
		Asphalt Mill and Fill	39		

Life cycle cost analysis results effects of asphalt compaction

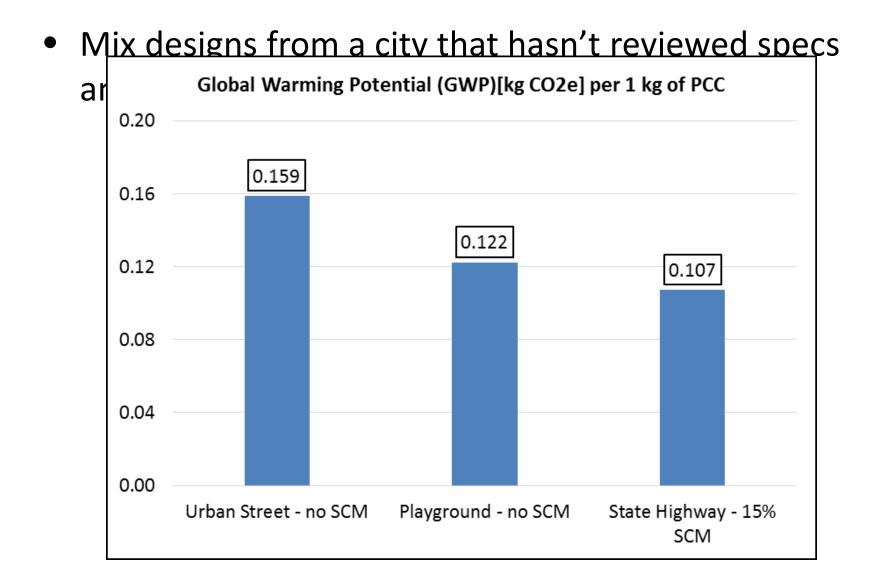
Some other changes that can be considered to improve life cycle cost

- Update street and minor concrete mix specifications
 - Reduce cement content and use supplementary cementitious materials
- Full-depth reclamation
- Cold in-place recycling
- Bonded concrete overlays

Questions?

www.ucprc.ucdavis.edu/ccpic

Concrete mix specifications


- Older concrete specifications
 - Written to ensure enough cement to meet strength and durability requirements
 - Often included minimum cement content
- Modern concrete mix designs
 - Minimize need for portland cement
 - Replace with supplementary cementitious materials (SCM
 - Minimize amount of cement paste in the mix: dense aggregate gradations

Concrete mix specifications

- What are SCMs?
 - Fly ash, natural pozzolans, slag cement
 - These can come pre-blended (new ASTM specs)
 - Caltrans also allows 5% replacement with ground limestone
 - Agencies are evaluating up to 15%
- These changes to mix design specs
 - Increase durability of the concrete
 - Decrease environmental impact
- When was the last time you reviewed your concrete specifications?

Effects on greenhouse gas emissions

What you need to do

- Use dense aggregate gradations: Reduces cost, shrinkage
- Specify limits on shrinkage and strength: Reduces water contents
- Require quality control and quality assurance testing for strength, shrinkage, other properties of interest. Small cost for sampling and testing
- Require use of supplementary cementitious materials. Tend to reduce shrinkage, improve durability, reduce greenhouse gas emissions, may reduce cost
- Allow the use of blended cements (ASTM C595)
- Work with a concrete mix design expert to review your specifications and change them

But what about?

- How do I know that these mixes will give me good performance?
- Will these changes in specifications cost me more?
- Are there any other issues such as constructability with these mixes?

Full-depth Reclamation (FDR)

- For badly cracked asphalt or to correct cross-slope
- Pulverize and stabilize (one pass), compact, overlay
- Stabilization options
 - Foamed asphalt (about 2.5 %) with cement (about 1%)
 - Need some granular material below the asphalt
 - Cement
 - If no granular material below asphalt
 - Enough cement to reach minimum strength <u>and no more!</u>
 - No stabilizer
 - Acts like granular base
 - Engineered emulsions
 - More work needed to develop recommendations

Cold Central Plant Recycling (CCPR)

- Like FDR but set up a mobile plant on site
- Mill out asphalt, process on site, put back
- Can do any required subgrade stabilization

Cold In-place Recycling (CIR)

- Partial depth (top 2 to 5 inches)
- Mill and stabilize, compact, overlay
- Stabilized with emulsion and a small amount of cement
- Must achieve correct gradation

